When you exercise, the muscles you use require more energy. When exercise can be sustained, this demand is met primarily by aerobic means.
Aerobic energy production in muscles results in increased gas exchange at the lungs, because more oxygen is taken in and more carbon dioxide is released according to an article published in the journal Breathe in March 2016. Your blood transports these metabolic gases to and from your tissues.
Video of the Day
Video of the Day
Tip
When you exercise, you take in more oxygen and more carbon dioxide is released.
Gas Exchange at Rest
Oxygen and carbon dioxide are both present in the atmosphere. Oxygen composes 20.9 percent of the air you breathe, while carbon dioxide makes up 0.03 percent. When you breathe, you transfer these metabolic gases between the atmosphere and your blood in your lungs.
Oxygen moves into your blood, which transports it to tissues where it liberates energy from foods you have eaten. This results in production of carbon dioxide, which must be removed, says the National Heart, Lung and Blood Institute.
At rest, you consume 3.5 milliliters of oxygen per kilogram of body weight each minute to satisfy energy needs. Your muscle fiber type, glycogen content, dietary fat intake, training and blood metabolites all influence how much carbon dioxide you produce in association with this oxygen consumption. The least amount is 0.7 liters for every liter of oxygen if fat is burned exclusively.
Read more: Causes of Low Carbon Dioxide in the Blood
Gas Exchange During Exercise
During exercise, your body needs more energy, which means your tissues consume more oxygen than they do at rest. Consuming more oxygen means you will also produce more carbon dioxide because your metabolic rate is elevated.
The ratio of carbon dioxide produced per oxygen consumed also increases during exercise because a shift from fat to carbohydrate utilization takes place. At the most challenging work rates, you burn carbohydrates exclusively and produce 1.0 liter of carbon dioxide for every liter of oxygen you consume.
Nonmetabolic Carbon Dioxide
At rest and during moderate exercise, lactic acid will not increase in your muscles because all that is produced is also used. Once you reach more challenging work rates, production exceeds use and the acid enters your blood.
To maintain a healthy pH, sodium bicarbonate in your blood buffers most lactic acid by breaking it down to water and carbon dioxide. This results in additional carbon dioxide that must be released by your blood.
Jogging Versus Resting
When you jog at 6 mph, you need 10.2 times the resting oxygen requirement, or 35.7 milliliters per kilogram each minute, if this is a very challenging pace. Your muscles will burn carbohydrates exclusively and produce 35.7 milliliters of carbon dioxide per kilogram each minute. This equates to 3 liters of carbon dioxide each minute for a 185-pound person sustaining that pace.
The American Council on Exercise notes that challenging exercise would also result in lactic acid accumulation and subsequent buffering to carbon dioxide. It is not unusual to produce an additional 0.1 liters of carbon dioxide for every liter of oxygen consumed for this reason. This means total carbon dioxide production by a 185 pound person jogging 6 mph could be 3.3 liters per minute.
Was this article helpful?
150 Characters Max
0/150
Thank you for sharing!
Thank you for your feedback!